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A QUADRATURE FORMULA INVOLVING 
ZEROS OF BESSEL FUNCTIONS 

CLEMENT FRAPPIER AND PATRICK OLIVIER 

ABSTRACT. An exact quadrature formula for entire functions of exponential 
type is obtained. The nodes of the formula are zeros of the Bessel function of 
the first kind of order a . It generalizes and refines a known quadrature formula 
related to the sampling theorem. The uniqueness of the nodes is studied. 

1. INTRODUCTION 

Given any polynomial p of degree < n and n distinct numbers x1, x2, 
..., x, the classical Lagrange interpolation formula is 

n IX 
P 1X ) pPX (x - Xk) 1'(Xk) 

where l(x) = Hln> (x - xj). Multiplying both members of (1) by a weight 
function w(x) and integrating, we obtain the quadrature formula 

1 n 
(2) ]w(x)p(x)dx = Zk P(Xk), 

k=1 

where 

i 1 (X Xk) 1'(Xk) 

In order to obtain a quadrature formula valid for all polynomials of degree 
< 2n, we consider the Hermite interpolation formula 

n 

(3) p(X) = (P(xk)lk,0(x) + P'(Xk)lk, 1 (x)) 
k=1 

with 

Ik,O(x) = (1- I(<U (X- Xk)) ((X 

and 
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/k,1(X) = (X -Xk) 
(X (-Xk ) 1 (Xk )) 

This time we obtain 
1 ~~~~n 

(4) / w(X) p(X) = Z(k,0P(Xk) +Ak,l P'(Xk)), 
-1 k=1 

where 

k,r= j W(X)lk,r(x) dx. 

If we take, in particular, the nth orthogonal polynomial l(x) = Qn(x) associ- 
ated with the weight function w (x), then [6] we have Ak, 1 = 0 and Ak, O = Ak i 
1 < k < n. Therefore, the quadrature formula (2) is valid for all polynomials 
of degree < 2n. Moreover, the zeros of Qn(x) are the only points having this 
property. 

The Jacobi polynomial of degree n, Qn (x) n p(a 4)(x), is, with w (x) = 
(1 - x)a(l + x)fl, an important special case . For the Chebyshev polynomial of 
the first kind of degree n, 

22n (n !)2 p(1/2, -1/2)(X) COS(narcosx) 
Tn()=(2n)! ncs( rcsx 

we get the Gauss-Jacobi type formula 

(5) 1 1x = ! jp (cos (2k )>) 

This formula has been extended to entire functions. Let Bq be the class of 
entire functions of exponential type a, bounded on the real axis. If f E B2T 
satisfies f(x) = 0 (Ix-) , ( > 1, then [1] 

(6) j f(x)dx= T Z f((21)7( 

This latter is in fact valid under weaker integrability conditions [2]. Here the 
nodes (2k - 1)lc/(2T), the zeros of cos Tz, are related to those of formula (5) 
by 

nlm = CO Tz . 

In general [6, p.167], 

lim P,n ) (cOs(Tz/n)) = (i)aj(iz), 
n-*oo nT 

where Ja(z) is the Bessel function of the first kind of order a. Thus, the nodes 
in (6) are the zeros of J-112(TZ)/ (Tz)-/2 ; it appears natural to generalize (6) 
using as nodes the zeros of Ja}(TZ)/ (TZ)a. 
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For the various properties of Bessel functions used in this paper, we refer the 
reader to [7]. 

2. STATEMENT OF THE RESULTS 

The function 

J, (TZ) 00 k (TZ)2k 

(TZ) k=-O 2a+2kk! F(k + a +1) 

is an even entire function of exponential type T. Let jk = 1k(a), k = +1, 
+2, ... , be the zeros of Jo (z)/zaY ordered such that I-k = -jk and 0 < Ij, I < 

1121 .... We are now ready to state our main result. 

Theorem 1. Let R(a) > -1 . For all f E B2T such that f(x) = 0 (IxI-,) x - 

+o0, with ( > 2R(a) + 2, we have 

J X2a+1 (f(x) + f (-x)) dx 

(8) 2 00 j2ca (I \I Y 

(8) = ~~~2a+2 E (J(k) (f (k T f ( T ) 

The particular case a = -1/2 leads us to formula (6). Indeed, we have 

JL112(TZ) 
CO_T 2d7 1/2 COSZk (-1/2) = (2k- 1) 

TZ 
- 7r2 

When a = 1/2 we have 

J112(TZ) 
- 2 sinT z 

(TZ) 1/2 - 7 TZ 

and the formula (8) becomes 

(9) jx f(x) dx= E 00( )(k ) 

k=-oo( ) ( ) 
k#O 

where f(x) = 0 (Ix l) , x - +oo, 5> 3. Replacing f(x) by 

X ( ( ~~siTX 2 

where f(x) can be supposed to be even, we obtain 

(10) j f(x)dx =T E f( T ) 

where f(x) = 0 (Ixl -K) , x - oo, ( > 1. Up to a translation, this formula 
is equivalent to (6). 

By considering a function of the form 

J ( ) Ff ) Ja (TZ) 

f(z) = F(z) Jeorz Z(TZI- m) 
we obtain the following corollary of Theorem 1. 
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Corollary 1. Let MR(a) > - 1 . For all F E BT such that F (x) = 0 (Ix-) x 
+oo, with ( > R(a) + 1/2, we have 

im T+ J i (F(x) _F(-x) dx 
(I11) F ( -) = 2j (M) 5xa+1 Ja (TX) ( )- ))dx. T 2jm 0 TXI- m TX+Ijm 

Taking in (1 1) the function 

F(z) Ja (T Z) 

we deduce the following property of Bessel functions. 

Corollary 2. Let MR(a) > -1I. If m and I are integers, then 

1 
A. xJ2(X) I+ dx 

02 (( X jm)(x )M (x + Im)(X + )) (12) 0, 1=m 

Note that the case I = m of (12) will be used in the proof of Theorem 1. 
So, we shall need an independent proof (see Lemma 4). 

When a = 1/2, in Corollary 2, we readily obtain the orthogonality property 
[4] of the family 

{ sin7r(x - m) mM Ez} 

namely, 

(13) 1?? sinnr(x-m) sin7r(x1l) fO 1 , m, 
i r (x- M) 7r(X -l) 1, lM. 

It has been proved [5] that formula (10) is the unique quadrature formula of 
the form 

00 00 

(14) jf(x)dx= 0 Ak f(Xk)X 
?? k=-oo 

which is valid for all f E B2T. The nodes Xk in (14) are completely character- 
ized by an extremal problem: they are the roots of the function sin TX, which 
minimizes the integral 

f| (s(x)) dx, 

over a certain subclass of BT. The following theorem is the corresponding 
(a = -1/2 ) uniqueness result for quadrature formulas of the form 

(15) jx 2+1 (f(x) + f(-x))dx = Z Ak f(Xk) 
k=-oo 

Observe that if a is not real then the uniqueness does not hold. The formula 
(8), when a is replaced by a, is still valid for the same class of functions. To see 
this we need only to replace f(z) by f(z) and to observe that Ik (a) = Ik () . 
Therefore, we assume that the sequence Xk, -oo < k < oo, in (15), is a 
sequence of distinct real numbers without an accumulation point in R. We 
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assume also that one of the nodes is a zero of J, (Tz) . We associate, with every 
quadrature formula of the form (15) and every zero jm of J, (z) (which has 
only real zeros for a > -1), a class of entire functions wi with the following 
properties: 

(i) E BT E 
(ii) wo(x) E R for x E R, 

(iii) O(X) = 0 (XI-a-3/2) x -, ?00 

(iV) w(Xk) =O, k m, 
(v) OW(jm/T) = 1. 

Here the nodes Xk, -0o < k < o0, have been ordered such that xm = jmI/T 
We call every such function wo a nodal function. 

Theorem 2. Let a > -1 . Among all the quadrature formulas of the form (15) 
having w(x) as nodal function, only one is valid for all f E B2T satisfying 
f(x) = 0 (Ixl-) , x -i +x0, ( > 2a+2. Thisformula is (8), and the associated 
nodal function is 

We (x) =Je(jm) Xa (TX - Jm) 
Moreover, We minimizes the integral 

j x2a+1 (02(X) + 02(-x)) dx 

over all nodalfunctions w . 

3. AUXILIARY RESULTS 

For every entire function of exponential type satisfying certain conditions at 
infinity, we have the classical sampling theorem, namely 

(1 /~~~~~0 l kI,Yr' sinTX 
(16) f(x) l)k 

J Tx-k5rT 
k=-oo 

Integrating formally both members of ( 16), we obtain formula (10) but only for 
f E BT. In order to prove a result valid for f E B2T, we use an extension, to 
entire functions of exponential type, of formula (3). This extension (see Lemma 
3, below) is a generalization and a refinement of (16). 

From now on we may suppose T = 1. We need first a technical result. 

Lemma 1. Let z = ReiO be a complex number on the circle Izl = R := N7r + 
MR(a)ir/2 + ir/4, where N is a large positive integer. There exists a positive 
constant C(a) such that 

(17) 1 Ja (Z)I >C(a) eRI sin 101 <7C) 

Proof. Obviously, we may suppose R(z) > 0. In view of the asymptotic ex- 
pansion 

(18) Ja'(Z) = cos (z - a- -) (1 + (IzK-')) 

it suffices to prove that 
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Let x = RcosO, y = R sin 6, u= x-R(a)7r/2-7r/4 and v =y-a(a)7r/2. 
Note that 

cos(z-a- - - )=cos(u+ iv) and 

Icos(u + iV)12 = cos2 u + sinh2 v. 

Let Rk = k7r + R(a) 7r/2 + r/4, Xk := Rk - 7/2 and yo := a(a) r/2. For 
1 < k < N, consider the two arcs of the circle lzl = R inside the strip xk - 

ir/2 < x < xk + 7/2. Suppose that z = x + iy is on an arc for which xk - r/2 < 
X < Xk + 7/2 and IY - yoI > r/4. Using (20), we have 

cos (z-a- - CS) 2u + sinh2v > sinh2v > (1 e22)2l 

whence 

(21) Cos (za 4) >Cl(a)e 

If z = x+iy is on an arc for which xk -7/2 < x < Xk+ 7/2 and lY-yoI < 71/4, 
then Ix - xkl > Vir2/16 - v2 (recall that N is taken sufficiently large). But 

Ix-xkl = Iu-k7r+l7/21 < 7r/2, and so 

cos(Z-a2- . ) 2 =cos2 u+sinh2v = sin2 (u-k7r+-) +sinh2 v 

= sin XkI +sinh2 v > sin2 -v ) + sinh2v =:A(v). 

The function e-21vl A(v) is a positive continuous function in the closed interval 
[-7r/4, 7r/4]. Thus, it has a positive minimum in that interval, say D. It 
follows that 

(22) cos (z - - -)- > vDelvl > C2(a) eRIsin6. 

We shall also need the following result, which is a simple variant of [3, Lem- 
mas 1 and 2]. 

Lemma2. Letf EB, such that f(x) =O(Ixl-5), x -co. If R -oo, then 
we have, uniformly for 101 < , 

(23) f(Re'6) = O ecRI sinoI) 

Moreover, 

(24) f'(x) = O(IxI-"), x ,+oo. 

Lemma 3. Let MR(a) > -1. For all f E B2 such that f(x) = 0(IxK), x - 

?00, with 5 > 2R(a) + 1, we have 
00 

(25) f(x) = E [Ak(X)f(jk) +Bk(X)f (ik)I, 
k=-oo 

k#0 
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where 

(26) Ak(x):=(1? 2a + 1 (X-ik))/( / kk>a(x) J 
and 

(27) Bk (x):= (x jk) (jk (x) 

Proof. Consider the integral 

(28) INCX) 2if z2Y() dz, 
CN(Z - X) J2(Z) 

where CN is the circle lzl = R:= N7r + MR(a) 7r/2 + 7r/4. As remarked before, 
the function J,,(z)/zo is entire. Using Lemmas 1 and 2, we have, for large R, 

IIN(X)I < 2 | f ' I(Rei) dO < K(a, x) R 

Thus, 

(29) lim IN(X) = 0. 
N-*o0 

On the other hand, using the residue theorem, we have 

(30) IN(x) =Res(z =x) + E Res(z= Ak), 
ljk l<R 

and the result follows after a few calculations by letting N -* oc . O 

The following properties of Bessel functions will be used, in conjunction with 
Lemma 3, to prove (8). 
Lemma 4. Let MR(a) > -1 . For any zero Ik of Je,(z)/zc1, we have 

(31) x }.dx=0 

and 

(32) jxJc(X) ((x k)2 
+ 

(X+k)2) 
dx =2. 

Proof. Let R > e > 0. First we prove (31). We consider the curve F which is 
the union of the two intervals [-R, -e], [e, R] and the two semicircles Ce, 
CR, where CQ5:= {z: lzl = 5 and a(z) > 0}. We have 

(33) 
f 

zJ(z)Ht (Z) dz 0, 

where 
Hc1(z') = J-c(z) - e-c'71IJey(z) 

i sin Ca 
is a Bessel function of the third kind, with the usual interpretation when ca is 
an integer. From (33), we obtain 

(34) j F(x)dx+ j F(z)dz+ j F(x)dx+ j F(z)dz = 0, 
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where 
z Ja (z) H~1(z) 

F(z):= 
a 

_ 
Z) 

On C, we have lzl = e; since limzo0 J,(z)lzo = 1/(20 F(a+1)), we obtain, 
if a is not an integer, 

IF(z)l < Ki(a) e + K2(a) gl+2R(o) 

When a = n is an integer, we need to use, in addition, a representation formula 
for H(,)(z); we have Hn()(z) = Jn(z) + i Yn(z) ,with 

7CYn(z)=2 (y+ln- Jn(z)-Z ( l) () 

K=0 
00 

()K Z 2K+n 

(35) z -) Z2+ 
1:K! (n +K)! 2) 

K=0 

1 2 K 1 2 n +K) 

We obtain 
IF(z)I < K3 (a) e + K4(a) 81+2R(a) I lne . 

It follows that 

(36) lim J F(z)dz=O for R(a)>-l. 

On CR we use the asymptotic formula (18) and 

H(1)(z) = 
2 

ei(z-at1 - 1f )(I + O(zI-1)) irz 
to obtain 

IF(z)l< RK2) 

Thus, 

(37) lim J F(z)dz=O. 
R--+oo C 

Also, using H(,) (x) - er"i H(') (-x) = 2J (x), we get 

F(X) dx + F(X) dx= (F(X) + F-x)) dx = 2JR c' (1f2 dx, 

and so (31) follows from (34), (36), and (37). 
Now we prove (32). We need to distinguish two cases according as ik is real 

or not. When ik is not real, we consider the contour F defined in the proof 
of (31). Only one zero, jk or -jk, is inside 1. Thus, by the residue theorem, 

2 i JZJo(Z)H((z) (Z -j )2 + (Z + Ik)2) dz 

j(jk) J- t(Ik) 2 
Ik Jo,(Ik) HaMVIk =Ik Ja ik) i - 

.r 
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since 

(38) Ja(z)Ja(z) J J(z)J a (z) = 2sinoZ 7rz 
The integrals along C, and CR tend to zero, as e -* 0 and R - oo; the 
argument is analogous to the one used to obtain (36) and (37). Hence, using a 
decomposition of the form (34), we get 

1 f;0 (Ja(x) H()(X)- JT(-x) H )(-x)) (( 1 + Xd 2 27i Ka(X -1ik)2 (X+Ijk)2)Xiri 

which readily gives us (32). 
Now we suppose that Ik is real. Consider the curve I17 obtained from IF by 

replacing the interval [-jk - 5, -jk + (] by the semicircle C1 , = {z: IZ+jkl = 

( and a(z) > 01, where ( is sufficiently small. We have 

(39) Fi(z)dz=0, where Fi(z):= ZJa(z)H.a('), 
Jr ~~~~~~~~~~~(Z +jk )2 

It follows that 
fik - [0 too 

(40) / Fi (x) dx + / Fi(z)dz+ J Fi(x)dx + /Fi(x)dx = 0. 
J-oo Cl, -k 

Similarly, 

r? r~~~ ~ ~~ik- 0 
(41) I F2(x)dx + j F2(x)dx + F2(z)dz+ i F2(x)dx = 0, 

where 

F(Z) = (Z -Ja(z)Ha() and C2,= {Z: Iz - jkl = 6 and a(z) > 0} . 2 ( 
(Z -jk )2 

We add (40) and (41) to obtain 

JIk - ( 0 

0= (Fi (-x) + F2(x)) dx + (Fl(-x)+ F2(x))dx 
(42) 

+ 

+ (Fl(x) +F2(- x)) dx + j F(z) dz+ J F2(z)dz, 

whence 
_k_ _ _ _ (X)00 _ _ _ _X _ 

0= 2 j x J(x.) dx +2 x J2 (X) dx 
(43) o X (-Jk) i+6 (X-Jik) 

+ 2jX -iJa)- d+j F(z)dz j F2(z) dz. 
i (X + jk)2 Jc, . Jc2 . 

Taking the limit as 6 -* 0, we get 

0=2j; xJa (x)(( jk)2 +(x +Vk)2)dx 

(44) 
+ lim F zdz+ F2(z) dz 

6-*O ,, 1'.5 ~ ~ ~ 2, 
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It remains to evaluate the last limit. We have, if a is not an integer, 

im F ( (z) dz) 

- i lim (-ik +oei6)J(k +de i ) HaM (-jk +e56)dO 

-= iUk Ja(-jk) )(-jk) = 7Jik 
J k Ja ) 

*Ja (ik) J- a (k) 
-7f Jk sinair 

and 

lim ( F2(z)dz) =-7ik Ja'(iskJnta(Ik) 

Using (38), we readily obtain 

lim (I Fi (z) dz + F2(z) dz) =-4, 

and (32) follows from (44). When a is an integer, the function H(1) (z) has to 
be replaced by its limit. 5 

4. PROOFS OF THE THEOREMS 

We may obviously suppose T = 1. 

Proof of Theorem 1. Using Lemma 3, we have 
00 

f (x) + f(-x) = Z (Ak(X) + Ak(-X))f(jk) + (Bk(X) + Bk(-x))f (jk), 
k=-oo 

k5O 

that is, 

f (x) + f(-x)= Z Jk J) () + ? )f(ik) 

k#O 

(+ k Ja 2(2+1 ) (J(j))2 X 2a (X (x2 - j2 ) ik ) 

k#O 
00 2 j+1 J ( X) 

+ 42 (J a (ik))k2 X2 a ( X2 - (ikj) 

k#O 

Multiplying by x2a+1 and integrating, we obtain formally the formula (8) with 
the help of Lemma 4. Hence, it remains to justify the interchanges of the order 
of integration and summation. First observe that, in order to prove formula 
(8), we may assume 

(46) f(x) = O(Ixl-), x -* +o, 6 > 2R(a) + 6. 



A QUADRATURE FORMULA INVOLVING ZEROS OF BESSEL FUNCTIONS 313 

Indeed, if f(x) = 0 (Ixl), x -- ?oo, with only 3 > 2R(a) + 2, then the 
functions 

ge(z) (sez )f(z), 8 > 0, f E B2T, 

satisfy the hypothesis of Theorem 1 with r replaced by T+2e and ( > 2 R(ca) +2 
replaced by ( > 2R(ca) + 6. Thus, 

j x2a+1 (g,(x) + ge(-x)) dx 

(T + 28)2a+2 Z (Ja'(jk))2 (e ( Jk) + g T ( k)) 

The passage to the limit as e -* 0, in (47), is easily justified using 

< 1 and f Jk ) 
sinx T 

_ _ _ 
2 

_ 
lik_I 

_ 

Now we must prove, in particular, that 

[00(00 j2a+?1 2 X 

2k _oc( ,-( k ))2X Ja j2 f ( jk)) d x 

(48) k (fO 

= 0 j2p0 2(X L 2 (j ))2f (jk) 
X _ja dx_ . 

k=-oo (k(k) f(k x k:XO 

The other interchanges could be proved, with a slight simplification, as is done in 
the following argument. In view of Lebesgue's dominated convergence theorem, 
it suffices to show that there exists an integrable function G(x) such that 

(49) A )Ak(X) < G(x) , where Akk(X) (J(k))2 x2 (jk) 
k=-ook 

k#O 

For small values of x, we use Ja(x) = 0 (Ix (a)) as x 0, (24) and the 
hypothesis (46) to obtain 

00 

E Ak (X) < K? (a) X23(a)+l 
k=-oo 

k#O 

For large values of x, we write 
00 

(50) Z itk(X) =I1 +I2+I3, 
k=-oo 

k#O 

where 

I,:= Z iAk(X), I2:= Z )k(X) and 13:= Z Ak(X) 
lik 

1<7 <iJk1< 'A2 <lJkI 
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We have, for x/2 < Ijkl < 3x/2, 

lX2 .2 < Cl(a) , 

which follows from 

J>(x) = J J'(u) du 
iik 

and the asymptotic formula 

Ja'(u) = 4sin (u - a-2 - 0)( + O(IuI-,)). 

Thus, using also (46) and (24), we obtain 

<2 ? C(a) z2 E kl ()+ X3 < 8C 1(a) j2R(a)+5-c < C2(I) 
I2 X <IJ ik~ x2 I ilk - X2 X2 < l jk I< 32 k=-coo 

In order to obtain an upper bound for I1 and I3, we use (46), (24) and the 
above asymptotic formula for J' . We get 

li 
2E(a)+2-6 

4 3 (ce) 12R(a)+2-6 < C4(a) I, ? G3(a) I2 1lk2 < - 
2 k Ik x2 

ljk I<2 k=-c 
k#O 

and 

lik <1E2()+2a< 4 C5(a) E c2R(,)+2-6 <C6(a) 

E3< C5a) < K(- ) 

k=-oo 
k#O 

for large values of x. 5 

Proof of Theorem 2. Consider two quadrature formulas of the form (15) with 
nodal functions cowI (x) and w02(x), respectively. Suppose COwI (x) 0 w02(x), and 
let h(x) := COI (x) - cw22(x) . The function h(x) coI (x) is in B2 and vanishes at 
the nodes Xk (including k = m) associated with the quadrature formula with 
co I (x) as nodal function. Moreover, h(x) a) I(x) = 0 (IXI-2a-3), X - ?o. 
Therefore, 

(51) j x2a+1 (h(x) o1 (x) + h(-x) c1 (-x)) dx = 0. 

Since h(x) $ 0, we have 

j x2a+ (h2(x) + h2(-x)) dx > 0, 
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and so, using (51), 

(52) j X2a (w02(X) + w2(-x)) dx > j x2+1 (a2(x) + w02 (-x)) dx. 

Considering, instead of h(x) co (x), the function h (x) 02(x), we are led 
similarly to 

(53) j 2a+1 (w2(x) + w02 (-x)) dx > j X2+1 (w02(X) + )2 (-x)) dx, 
o~~~~~~~~~~~~ 2 

which contradicts (52). Thus wI(x) _02(x). 
Since ce (x) is the nodal function associated with (8), we deduce, by the 

same argument, that 

j 2a+I (02(x) + wj2(-x)) dx > j X2a+1 (w02(X) + w)2 (-x)) dx, 
o~~~~~~~~~~~~~~ e 

for all nodal functions c)w(x) 0 We(X) * 5 

5. REMARKS AND EXAMPLES 

5.1. Theorem 1 does not remain valid for the class B, if a > 2T. Any 
function of the form 

2 

f* (z) = JTZ) JZ7(TZ J,/2 )2 6 > O, za ZZ ~Z?/2) 

is a counterexample. The function f* is in the class B2,+, and f* (x) = 

0 (Ixl-), x -- +00, with 5 = 2R(a) + 2 + q. The summation in the right- 
hand member of (8) is clearly zero, but the integral of the left-hand member is 
positive, since 

f*()=|Ja (TX) 
2 

( i/ (,ex/2) 2 
_*(x JXa Xx) 

5.2. The hypothesis 3 > 2R(a) + 2 cannot be relaxed in Theorem 1. Consider 
the function 

= (Z( 

J 

() +Z) 

a+ 

T (e 

Z) 

This function is in the class B2, and f*(x) = 0 (I x ), x o 
+00, 

with 
6 = 2R(a) + 2. The summation in the right-hand member of (8) is clearly 
zero but, for R(a) > -1, 

x2a+1 (f*(x) +f*(-x)) dx= 2 J ck(TX)Ja+1(TX) dx - 
J? J0-T 

5.3. When a = m + 1/2, where m is a nonnegative integer, the functions 
Ja(z) take the following explicit form: 

Jm+i/2(Z) Zm 1dm sinz JM+1/2(z)- z z dz)(% z 
In the case m = 1, formula (8) becomes 

(54) jx4f(x) dx= 32 r(+,Lf~ ) J x4 f(x) dX = ~~5 E rk (1+ rk) T) 00 ~~~~k=-oo 

where f E B2r satisfies f(x) = O(Ixl-l), x -* +ox, with 3 > 5 and rk, 
-00 < k < 0, are the roots of the equation tanx = x . 
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5.4. Let 
VIjm Ja (Z) 

(Pm(Z) :=za (Z2 - j2 

If we take, in Theorem 1, T = 1 and f(z) = (m(Z) (p,(z), then we obtain 

(55) jX2a+1 (m(X) i(X) dx = { 

In other words, the family {Pm: m = +1, +2, ... } is orthonormal on [0, oo) 
with weight function x2a+l. 
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